3.1.24 \(\int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx\) [24]

3.1.24.1 Optimal result
3.1.24.2 Mathematica [B] (verified)
3.1.24.3 Rubi [A] (warning: unable to verify)
3.1.24.4 Maple [B] (verified)
3.1.24.5 Fricas [A] (verification not implemented)
3.1.24.6 Sympy [F]
3.1.24.7 Maxima [F(-2)]
3.1.24.8 Giac [F]
3.1.24.9 Mupad [B] (verification not implemented)

3.1.24.1 Optimal result

Integrand size = 25, antiderivative size = 87 \[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=-\frac {e^{3/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d}+\frac {e^{3/2} \text {arctanh}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d} \]

output
-e^(3/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d+1/2*e^(3/2)*arctanh(1/2* 
(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))/a/d*2^(1/2)
 
3.1.24.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(280\) vs. \(2(87)=174\).

Time = 0.55 (sec) , antiderivative size = 280, normalized size of antiderivative = 3.22 \[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=-\frac {8 e^{3/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-4 \left (-e^2\right )^{3/4} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )+2 \sqrt {2} e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-2 \sqrt {2} e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+4 \left (-e^2\right )^{3/4} \text {arctanh}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )+\sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )-\sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{8 a d} \]

input
Integrate[(e*Cot[c + d*x])^(3/2)/(a + a*Cot[c + d*x]),x]
 
output
-1/8*(8*e^(3/2)*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]] - 4*(-e^2)^(3/4)*ArcT 
an[Sqrt[e*Cot[c + d*x]]/(-e^2)^(1/4)] + 2*Sqrt[2]*e^(3/2)*ArcTan[1 - (Sqrt 
[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] - 2*Sqrt[2]*e^(3/2)*ArcTan[1 + (Sqrt[2] 
*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] + 4*(-e^2)^(3/4)*ArcTanh[Sqrt[e*Cot[c + d* 
x]]/(-e^2)^(1/4)] + Sqrt[2]*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - S 
qrt[2]*Sqrt[e*Cot[c + d*x]]] - Sqrt[2]*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c 
 + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(a*d)
 
3.1.24.3 Rubi [A] (warning: unable to verify)

Time = 0.66 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4056, 25, 3042, 4015, 221, 4117, 27, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cot (c+d x))^{3/2}}{a \cot (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{a-a \tan \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4056

\(\displaystyle \frac {\int -\frac {a e^2-a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}+\frac {1}{2} e^2 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} e^2 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx-\frac {\int \frac {a e^2-a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} e^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {\int \frac {a e^2+a \tan \left (c+d x+\frac {\pi }{2}\right ) e^2}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 4015

\(\displaystyle \frac {e^4 \int \frac {1}{2 a^2 e^4-\left (a e^2+a \cot (c+d x) e^2\right )^2 \tan (c+d x)}d\frac {a e^2+a \cot (c+d x) e^2}{\sqrt {e \cot (c+d x)}}}{d}+\frac {1}{2} e^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} e^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {e^{3/2} \text {arctanh}\left (\frac {a e^2 \cot (c+d x)+a e^2}{\sqrt {2} a e^{3/2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {e^2 \int \frac {1}{a \sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{2 d}+\frac {e^{3/2} \text {arctanh}\left (\frac {a e^2 \cot (c+d x)+a e^2}{\sqrt {2} a e^{3/2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^2 \int \frac {1}{\sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{2 a d}+\frac {e^{3/2} \text {arctanh}\left (\frac {a e^2 \cot (c+d x)+a e^2}{\sqrt {2} a e^{3/2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {e^{3/2} \text {arctanh}\left (\frac {a e^2 \cot (c+d x)+a e^2}{\sqrt {2} a e^{3/2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}-\frac {e \int \frac {1}{\frac {\cot ^2(c+d x)}{e}+1}d\sqrt {e \cot (c+d x)}}{a d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {e^{3/2} \arctan \left (\frac {\cot (c+d x)}{\sqrt {e}}\right )}{a d}+\frac {e^{3/2} \text {arctanh}\left (\frac {a e^2 \cot (c+d x)+a e^2}{\sqrt {2} a e^{3/2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}\)

input
Int[(e*Cot[c + d*x])^(3/2)/(a + a*Cot[c + d*x]),x]
 
output
(e^(3/2)*ArcTan[Cot[c + d*x]/Sqrt[e]])/(a*d) + (e^(3/2)*ArcTanh[(a*e^2 + a 
*e^2*Cot[c + d*x])/(Sqrt[2]*a*e^(3/2)*Sqrt[e*Cot[c + d*x]])])/(Sqrt[2]*a*d 
)
 

3.1.24.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 

rule 4056
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[Simp[a^2*c - b^2*c + 
2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x 
]], x], x] + Simp[(b*c - a*d)^2/(c^2 + d^2)   Int[(1 + Tan[e + f*x]^2)/(Sqr 
t[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
3.1.24.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(297\) vs. \(2(71)=142\).

Time = 0.05 (sec) , antiderivative size = 298, normalized size of antiderivative = 3.43

method result size
derivativedivides \(-\frac {2 e^{2} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}\right )}{d a}\) \(298\)
default \(-\frac {2 e^{2} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}\right )}{d a}\) \(298\)

input
int((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-2/d/a*e^2*(-1/16/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*c 
ot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x 
+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c 
))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/16/(e 
^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/ 
2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^ 
2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(- 
2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/2/e^(1/2)*arctan((e*cot(d*x 
+c))^(1/2)/e^(1/2)))
 
3.1.24.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 333, normalized size of antiderivative = 3.83 \[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=\left [-\frac {\sqrt {2} \sqrt {-e} e \arctan \left (\frac {{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, {\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) - \sqrt {-e} e \log \left (\frac {e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) - 2 \, \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right )}{2 \, a d}, \frac {\sqrt {2} e^{\frac {3}{2}} \log \left (-{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) - \sqrt {2}\right )} \sqrt {e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, e^{\frac {3}{2}} \arctan \left (\frac {\sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt {e}}\right )}{4 \, a d}\right ] \]

input
integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")
 
output
[-1/2*(sqrt(2)*sqrt(-e)*e*arctan(1/2*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2)*s 
in(2*d*x + 2*c) + sqrt(2))*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d* 
x + 2*c))/(e*cos(2*d*x + 2*c) + e)) - sqrt(-e)*e*log((e*cos(2*d*x + 2*c) - 
 e*sin(2*d*x + 2*c) - 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 
 2*c))*sin(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)))/( 
a*d), 1/4*(sqrt(2)*e^(3/2)*log(-(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2* 
d*x + 2*c) - sqrt(2))*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2* 
c)) + 2*e*sin(2*d*x + 2*c) + e) - 4*e^(3/2)*arctan(sqrt((e*cos(2*d*x + 2*c 
) + e)/sin(2*d*x + 2*c))/sqrt(e)))/(a*d)]
 
3.1.24.6 Sympy [F]

\[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=\frac {\int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\cot {\left (c + d x \right )} + 1}\, dx}{a} \]

input
integrate((e*cot(d*x+c))**(3/2)/(a+a*cot(d*x+c)),x)
 
output
Integral((e*cot(c + d*x))**(3/2)/(cot(c + d*x) + 1), x)/a
 
3.1.24.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.24.8 Giac [F]

\[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=\int { \frac {\left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}}{a \cot \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="giac")
 
output
integrate((e*cot(d*x + c))^(3/2)/(a*cot(d*x + c) + a), x)
 
3.1.24.9 Mupad [B] (verification not implemented)

Time = 12.78 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.91 \[ \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx=\frac {\sqrt {2}\,e^{3/2}\,\mathrm {atanh}\left (\frac {12\,\sqrt {2}\,e^{25/2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{12\,e^{13}\,\mathrm {cot}\left (c+d\,x\right )+12\,e^{13}}\right )}{2\,a\,d}-\frac {e^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{a\,d} \]

input
int((e*cot(c + d*x))^(3/2)/(a + a*cot(c + d*x)),x)
 
output
(2^(1/2)*e^(3/2)*atanh((12*2^(1/2)*e^(25/2)*(e*cot(c + d*x))^(1/2))/(12*e^ 
13*cot(c + d*x) + 12*e^13)))/(2*a*d) - (e^(3/2)*atan((e*cot(c + d*x))^(1/2 
)/e^(1/2)))/(a*d)